Skip to main content

Oryza rufipogon Griff.

  • Chapter
  • First Online:
The Wild Oryza Genomes

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Oryza rufipogon, the progenitor of present-day cultivated rice, O. sativa, is one of the most studied wild species of rice. It is a perennial plant commonly found in a marsh or aquatic habitats of eastern and southern Asia. It has partial outcrossing behavior and is photoperiod sensitive. The flowering time usually ranges between September and November. It has been and is being exploited as a source of valuable genes and QTLs for yield components as well as resistance against biotic and abiotic stresses. A number of populations like chromosome segment substitution lines, backcross inbred lines, near-isogenic lines, and recombinant inbred lines have been developed from crosses between O. rufipogon and O. sativa as a prebreeding resource. These are being employed for broadening the genetic base of cultivated rice and diversify the breeder’s pool. With the advent of sequencing technologies, a number of phylogenetic studies have been conducted to reveal the evolutionary relationship of O. rufipogon with cultivated rice O. sativa. Further, transcriptomic studies characterizing the effect of various abiotic stresses have been conducted on this wild species. Role of miRNA under stress reaction has also been studied. Though the genetic, genomic, and transcriptomic resources are abundant, the proteomic resources for O. rufipogon are limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal GK, Jwa NS, Iwahash Y, Yonekura M, Iwahashi H, Rakwal R (2006) Rejuvenating rice proteomics: facts, challenges and visions. Proteomics 6:5549–5576

    Article  CAS  PubMed  Google Scholar 

  • Ali ML, Sanchez PL, Yu S, Lorieux Eizenga GC (2010) Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa L.). Rice 3:218–234

    Article  Google Scholar 

  • Ammiraju JS, Lu F, Sanyal A, Yu Y, Song X, Jiang N, Pontaroli AC, Rambo T, Currie J, Collura K, Talag J (2008) Dynamic evolution of Oryza genomes is revealed by comparative genomic analysis of a genus-wide vertical data set. Plant Cell 20:3191–3209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andaya VC, Mackill DJ (2003) Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J Exp Bot 54:2579–2585

    Article  CAS  PubMed  Google Scholar 

  • Bautista NS, Solis R, Kamijima O, Ishii T (2001) RAPD, RFLP and SSLP analyses of phylogenetic relationships between cultivated and wild species of rice. Genes Genet Syst 76:71–79

    Article  CAS  PubMed  Google Scholar 

  • Berg MP, Kiers E, Driessen G, Der Heijden Van, Kooi BW, Kuenen F, Liefting M, Verhoef HA, Ellers J (2010) Adapt or disperse: understanding species persistence in a changing world. Global Change Biol 16:587–598

    Article  Google Scholar 

  • Brar DS, Khush GS (2006) Cytogenetic manipulation and germplasm enhancement of rice (Oryza sativa L.). In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering and crop improvement. CRC, Boca Raton, FL, pp 115–158

    Google Scholar 

  • Brozynska M, Copetti D, Furtado A, Wing RA, Crayn D, Fox G, Ishikawa R, Henry RJ (2016) Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice. Plant Biotechnol. https://doi.org/10.1111/pbi.12674

    Google Scholar 

  • Cheema KK, Grewal NK, Vikal Y, Das A, Sharma R, Lore JS, Bhatia D, Mahajan R, Gupta V, Singh K (2008) A novel bacterial blight resistance gene from Oryza nivara mapped to 38 Kbp region on chromosome 4L and transferred to O. sativa L. Genet Res 90:397–407

    Article  CAS  Google Scholar 

  • Chen WB, Nakamura I, Sato YI, Nakai H (1993) Distribution of deletion type in cpDNA of cultivated and wild rice. Jap J Genet 68:597–603

    Article  CAS  Google Scholar 

  • Chen F, Li Q, He Z (2007) Proteomic analysis of rice plasma membrane associated protein in response to chitooligosaccharide elicitors. J Integr Plant Biol 49:863–870

    Article  CAS  Google Scholar 

  • Chen J, Huang DR, Wang L, Liu GJ, Zhuang JY (2010) Identification of quantitative trait loci for resistance to whitebacked planthopper, Sogatella furcifera, from an interspecific cross O. sativa × O. rufipogon. Breed Sci 60:153–159

    Article  Google Scholar 

  • Chen Z, Li F, Yang S, Dong Y, Yuan Q et al (2013) Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rufipogon Griff.). PLoS One 8:e82844. https://doi.org/10.1371/journal.pone.0082844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X, Dong Y, Yu C, Fang X, Deng Z, Yan C, Chen J (2016) Analysis of the proteins secreted from the Oryza meyeriana suspension-cultured cells induced by Xanthomonas oryzae pv. oryzae. PLoS One 11:e0154793. https://doi.org/10.1371/journal.one.0154793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng C, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohtsubo E (2003) Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. Mol Biol Evol 20:67–75

    Article  CAS  PubMed  Google Scholar 

  • Cho SK, Ok SH, Jeung JU, Shim KS, Jung KW, You MK, Kang KH, Chung YS, Choi HC, Moon HP, Shin JS (2004) Comparative analysis of 5211 leaf ESTs of wild rice (Oryza minuta). Plant Cell Rep 22:839–847

    Article  CAS  PubMed  Google Scholar 

  • Deen R, Ramesh K, Gautam SK, Rao YK, Lakshmi VJ, Viraktamath BC, Brar DS, Ram T (2010) Identification of new gene for BPH resistance introgressed from O. rufipogon. Rice Genet Newsl 25:70–71

    Google Scholar 

  • Deng ZY, Gong CY, Wang T (2013) Use of proteomics to understand seed development in rice. Proteomics 13:1784–1800

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Cai W (2012) OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One 7(9):e45117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flavell RB (1994) Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Nat Acad Sci 91:3490–3496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Q, Zhang P, Tan L, Zhu Z, Ma D, Fu Y, Zhan X, Cai H, Sun C (2010) Analysis of QTL for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.). J Genet Genomics 37(2):147–157

    Article  CAS  PubMed  Google Scholar 

  • Gao LZ, Innan H (2008) Nonindependent domestication of the two rice subspecies, Oryza sativa ssp. indica and ssp. japonica, demonstrated by multilocus microsatellites. Genetics 179:965–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill N, Phillip S, Dhillon BDS, Abernathy B, Kim H, Stein L, Ware D, Wing R, Jackson SA (2010) Dynamic Oryza genomes: repetitive DNA sequences as genome modeling agents. Rice 3:251–269

    Article  Google Scholar 

  • Haritha G, Vishnukiran T, Yugandhar P, Sarla N, Subrahmanyam D (2017) Introgressions from Oryza rufipogon increase photosynthetic efficiency of KMR3 rice lines. Rice Sci 24:85–96

    Article  Google Scholar 

  • He Z, Zhai W, Wen H, Tang T, Wang Y, Lu X, Greenberg AJ, Hudson RR, Wu CI, Shi S (2011) Two evolutionary histories in the genome of rice: the roles of domestication genes. PLoS Genet 7:e1002100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoan NT, Sarma NP, Siddiq EA (1997) Identification and characterization of new sources of cytoplasmic male sterility in rice. Plant Breed 116:547–551

    Article  Google Scholar 

  • Hou LY, Ping YU, Qun XU, Yuan XP, Yu HY, Wang YP, Wang CH, Wan G, Tang SX, Peng ST, Wei XH (2011) Genetic analysis and preliminary mapping of two recessive resistance genes to brown planthopper, Nilaparvata lugens StÃ¥l in Rice. Rice Sci 18:238–242

    Article  Google Scholar 

  • Hu BL, Xie JK, Wan Y, Zhang JW, Zhang FT, Li X (2016) Mapping QTLs for fertility restoration of different cytoplasmic male sterility types in rice using two Oryza sativa × O. rufipogon backcross inbred line populations. Biomed Res. https://doi.org/10.1155/2016/9236573

    Google Scholar 

  • Huang P, Schaal BA (2012) Association between the geographic distribution during the last glacial maximum of asian wild rice, Oryza rufipogon (Poaceae), and its current genetic variation. Am J Bot 99:1866–1874

    Article  PubMed  Google Scholar 

  • Huang D, Qiu Y, Zhang Y, Huang F, Meng J, Wei S, Li R, Chen B (2013) Fine mapping and characterization of BPH27, a brown planthopper resistance gene from wild rice (Oryza rufipogon Griff.). Theor Appl Genet 126:219–229

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz BL, Kudrna D, Yu Y, Sebastian A, Zuccolo A, Jackson SA, Ware D, Wing RA, Stein L (2010) Rice structural variation: a comparative analysis of structural variation between rice and three of its closest relatives in the genus Oryza. Plant J 63:990–1003

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Kazama T, Motomura K, Toriyama K (2013) Whole genomic sequencing of RT98 mitochondria derived from Oryza rufipogon and northern blot analysis to uncover a cytoplasmic male sterility-associated gene. Plant Cell Physiol 54:237–243

    Article  CAS  PubMed  Google Scholar 

  • IRGSP (2005) International rice genome sequencing project: the map based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Ishii T, Terachi T, Tsunewaki K (1988) Restriction endonuclease analysis of chloroplast DNA from A-genome diploid species of rice. Jap J Genet 63:523–536

    Article  Google Scholar 

  • Jacquemin J, Bhatia D, Singh K, Wing RA (2013) The international Oryza map alignment project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr Opin Plant Biol 16:147–156

    Article  CAS  PubMed  Google Scholar 

  • Jenks MA, Hasegawa PM (2005) Plant abiotic stress. Blackwell, UK

    Book  Google Scholar 

  • Jiang C, Cheng Z, Zhang C, Yu T, Zhong Q, Shen JQ, Huang X (2014) Proteomic analysis of seed storage proteins in wild rice species of the Oryza genus. Proteome Sci 12:51. https://doi.org/10.1186/s12953-014-0051-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin XW, Wang CL, Yang Q, Jiang QX, Fan YL, Liu GC, Zhao KJ (2007) Breeding of near-isogenic line CBB30 and molecular mapping of Xa30(t), a new resistance gene to bacterial blight in rice. Sci Agri Sin 40:1094–1100 (Chinese with English abstract)

    Google Scholar 

  • Jin FX, Kim DM, Ju HG, Ahn SN (2009) Mapping quantitative trait loci for awnness and yield component traits in isogenic lines derived from an Oryza sativa/O. rufipogon cross. J Crop Sci Biotech 12:9–15

    Article  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kadowaki K, Yazaki K, Osumi T, Harada K, Katsuta M, Nakagahra M (1988) Distribution of mitochondrial plasmid-like DNA in cultivated rice (Oryza sativa L.) and its relationship with varietal groups. Theor Appl Genet 76:809–814

    Article  CAS  PubMed  Google Scholar 

  • Kawakami SI, Ebana K, Nishikawa T, Sato YI, Vaughan DA, Kadowaki KI (2007) Genetic variation in the chloroplast genome suggests multiple domestication of cultivated Asian rice (Oryza sativa L.). Genome 50:180–187

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochem Biophys Acta 1819:137–48

    Google Scholar 

  • Kikuchi S, Satoh K, Nagata T (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 300:1566–1569

    Article  CAS  Google Scholar 

  • Kim H, Hurwitz B, Yu Y, Collura K, Gill N, SanMiguel P, Mullikin JC, Maher C, Nelson W, Wissotski M, Braidotti M, Kudrna D, Goicoechea JL, Stein L, Ware D, Jackson SA, Soderlund C, Wing RA (2008) Construction, alignment and analysis of twelve framework physical maps that represent the ten genome types of the genus Oryza. Genome Biol. https://doi.org/10.1186/gb-2008-9-2-r45

    Google Scholar 

  • Kim HJ, Jung J, Singh N, Greenberg A, Doyle JJ, Tyagi W, Chung JW, Kimball J, Hamilton RS, McCouch SR (2016) Population dynamics among six major groups of the Oryza rufipogon species complex, wild relative of cultivated Asian rice. Rice 9:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayashi N, Ikeda R, Domingo IT, Vaughan DA (1993) Resistance to infection of rice tungro viruses and vector resistance in wild species of rice (Oryza spp.) Jpn J Breed 43:377–387

    Google Scholar 

  • Komatsu S, Tanaka N (2004) Rice proteome analysis: A step toward functional analysis of the rice genome. Proteomics 4:938–949

    Google Scholar 

  • Koseki M, Kitazawa N, Yonebayashi S, Maehara Y, Wang ZX, Minobe Y (2010) Identification and fine mapping of a major quantitative trait locus originating from wild rice, controlling cold tolerance at the seedling stage. Mol Genet Genomics 284:45–54

    Article  CAS  PubMed  Google Scholar 

  • Kovach MJ, Sweeney MT, McCouch SR (2007) New insights into the history of rice domestication. Trends Genet 23:578–587

    Article  CAS  PubMed  Google Scholar 

  • 3K RGP (2014) The 3000 rice genomes project. GigaScience 3:7

    Google Scholar 

  • Kunze R, Saedler H, Lönnig WE (1997) Plant transposable elements. In: Callow JA (ed) Advances in botanical research, vol 27. Academic Press, San Diego/London, pp 331–470

    Google Scholar 

  • Li J, Thomson M, McCouch SR (2004) Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168(4):2187–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Li L, Wei S, Wei Y, Chen Y, Bai D, Yang L, Huang F, Lu W, Zhang X, Li X, Yang X, Wei Y (2006) The evaluation and utilization of new genes for brown planthopper resistance in common wild rice (Oryza rufipogon Griff.). Mol Plant Breed 4:365–371

    CAS  Google Scholar 

  • Liang J, Zhou M, Zhou X, Jin Y, Xu M, Lin J (2013) JcLEA, a novel LEA-like protein from Jatropha curcas, confers a high level of tolerance to dehydration and salinity in Arabidopsis thaliana. PLoS One 8(12):e83056. https://doi.org/10.1371/journal.pone.0083056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu B, Li P, Li X, Liu C, Cao S, Chu C, Cao X (2005) Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol 139:296–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu TM, Mao DH, Zhang SP, Xing YZ (2009) Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza sativa). Theor Appl Genet 118:1509–1517

    Article  CAS  PubMed  Google Scholar 

  • Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Nat Acad Sci 103:9578–83

    Google Scholar 

  • Lu H, Liu Z, Wu N, Berné S, Saito Y, Liu B, Wang L (2002) Rice domestication and climatic change: phytolith evidence from East China. Boreas 31:378–385

    Article  Google Scholar 

  • Lu T, Yu S, Fan D, Mu J, Shangguan Y, Wang Z, Minobe Y, Lin Z, Han B (2008) Collection and comparative analysis of 1888 full-length cDNAs from wild rice Oryza rufipogon Griff. W1943. DNA Res 15:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo YC, Hui Z, Yan L, Jun-Yu C, Jian-Hua Y, Yue-Qin C, Liang-Hu Q (2006) Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett 580:5111–5116

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Ji SD, Yuan PR, Lee HS, Kim DM, Balkunde S, Kang JW, Ahn SN (2013) QTL mapping reveals a tight linkage between QTLs for grain weight and panicle spikelet number in rice. Rice 6:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo XD, Jun Z, Dai LF, Zhang FT, Yi Z, Yong W, Xie JK (2016) Linkage map construction and QTL mapping for cold tolerance in Oryza rufipogon Griff. at early seedling stage. J Intg Agri 15:2703–2711

    Article  CAS  Google Scholar 

  • Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maas LF, Mcclung A, McCouch S (2010) Dissection of a QTL reveals an adaptive, interacting gene complex associated with transgressive variation for flowering time in rice. Theor Appl Genet 120:895–908

    Article  CAS  PubMed  Google Scholar 

  • Mandal N, Gupta S (1997) Anther culture of an interspecific rice hybrid and selection of fine grain type with submergence tolerance. Plant Cell, Tissue Organ Cult 51:79–82

    Article  Google Scholar 

  • Mao Y, Ge X, Frank GL, Madsion JM, Koehl- ner AN, Doud MK, Tassa C, Berry EM, Soda T, Singh KK (2009) Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3β/β-Catenin signaling. Cell 136:1017–1031

    Google Scholar 

  • Marri PR, Sarla N, Reddy LV, Siddiq EA (2005) Identification and mapping of yield and yield related QTL from an Indian accession of Oryza rufipogon. BMC Genet 6:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mather KA, Caicedo AL, Polato NR, Kenneth M. Olsen KM, McCouch S, Purugganan MD (2007) The Extent of Linkage Disequilibrium in Rice (Oryza sativa L.). Genetics 177:2223–2232

    Google Scholar 

  • McCouch SR, Sweeney M, Li J, Jiang H, Thomson M, Septiningsih E, Edwards J, Moncada P, Xiao J, Garris A, Tai T, Martinez C, Tohme J, Sugiono M, McClung A, Yuan L, Ahn SN (2007) Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 154:317–339

    Article  CAS  Google Scholar 

  • Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF (2005) The Phanerozoic record of global sea-level change. Science 310:1293–1298

    Article  CAS  PubMed  Google Scholar 

  • Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Reynolds A, Huang P, Jackson S, Schaal BA, Bustamante CD, Boyko AR (2011) Molecular evidence for a single evolutionary origin of domesticated rice. Proc Nat Acad Sci 10:8351–8356

    Article  Google Scholar 

  • Moncada P, Martinez CP, Borrero J, Chatel M, Gauch H, Guimaraes E, Tohme J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa x Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102(1):41–52

    Article  CAS  Google Scholar 

  • Moody K (1989) Weeds reported in Rice in South and Southeast Asia. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • Morishima H, Sano Y (1992) Evolutionary studies in cultivated rice. Oxford Surveys Evol Biol 8:135

    Google Scholar 

  • Morishima H, Sano Y, Oka HI (1984) Differentiation of perennial and annual types due to habitat conditions in the wild rice Oryza perennis. Plant Syst Evol 144:119–135

    Article  Google Scholar 

  • Nakamura I, Urairong H, Kameya N, Fukuta Y, Chitrakon S, Sato YI (1998) Six different plastid subtypes were found in O. sativa-O. rufipogon complex. Rice Genet Newslett 15:80–82

    Google Scholar 

  • Ogawa S, Valencia MO, Lorieux M, Arbelaez JD, McCouch S, Ishitani M, Selvaraj MG (2016) Identification of QTLs associated with agronomic performance under nitrogen-deficient conditions using chromosome segment substitution lines of a wild rice relative, Oryza rufipogon. Acta Physiol Plant 38:1–10

    Article  CAS  Google Scholar 

  • Ohyanagi H, Ebata T, Huang X, Gong H, Fujita M, Mochizuki T, Toyoda A, Fujiyama A, Kaminuma E, Nakamura Y, Feng Q, Wang ZX, Han B, Kurata N (2015) Oryza Genome: genome diversity database of Wild Oryza Species. Plant Cell Physiol 57:1–7

    Article  CAS  Google Scholar 

  • Oka HI and Chang WT (1959) The impact of cultivation on populations of wild rice, Oryza sativa f. spontanea. Phyton 13:105–17

    Google Scholar 

  • Pang HH, Wang XK (1996) A study on the annual O. rufipogon Griff. in China. Crop Genetic Resources 3:8–11

    Google Scholar 

  • Park KC, Kim NH, Cho YS, Kang KH, Lee JK, Kim NS (2003) Genetic variations of AA genome Oryza species measured by MITE-AFLP. Theor Appl Genet 107:203–209

    Article  CAS  PubMed  Google Scholar 

  • Qiao W, Qi L, Cheng Z, Su L, Li J, Sun Y, Ren J, Zheng X, Yang Q (2016) Development and characterization of chromosome segment substitution lines derived from Oryza rufipogon in the genetic background of O. sativa spp. indica cultivar 9311. BMC Genom 17:580

    Article  Google Scholar 

  • Rakshit S, Rakshit A, Matsumura H, Takahashi Y, Hasegawa Y, Ito A, Ishii T, Miyashita NT, Terauchi R (2007) Large-scale DNA polymorphism study of Oryza sativa and O. rufipogon reveals the origin and divergence of Asian rice. Theor Appl Genet 114:731–743

    Article  CAS  PubMed  Google Scholar 

  • Ren F, Lu BR, Li S, Huang J, Zhu Y (2003) A comparative study of genetic relationships among the AA-genome Oryza species using RAPD and SSR markers. Theor Appl Genet 108:113–120

    Article  CAS  PubMed  Google Scholar 

  • Sang T, Ge S (2007) The puzzle of rice domestication. J Integr Plant Biol 49:760–768

    Article  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin Y-K, Motchoulskaia N, Zakharov D, Melake-Berhan A (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Bhattacharyya S, Gantait S (2017) Cytological analysis for meiotic patterns in wild rice (Oryza rufipogon Griff.). Biotechnol Reports 13:26–29

    Article  Google Scholar 

  • Second G (1982) Origin of the genic diversity of cultivated rice (Oryza spp.): study of the polymorphism scored at 40 isozyme loci. Jap J Genet 57:25–57

    Article  Google Scholar 

  • Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107(8):1419–1432

    Article  CAS  PubMed  Google Scholar 

  • Song BK, Waugh R, Marshall D, Nadarajah K, Ratnam W (2011) Comparative physical mapping using overgo-tagged site reveals strong conservation of synteny between cultivated and common wild rice in the 1.2 Mb yld1. 1 region. Asia-Pacific J Mol Biol Biotechnol 19:157–168

    Google Scholar 

  • Sun C, Wang X, Yoshimura A, Doi K (2002) Genetic differentiation for nuclear, mitochondrial and chloroplast genomes in common wild rice (Oryza rufipogon Griff.) and cultivated rice (Oryza sativa L.). Theor Appl Genet 104: 1335–1345

    Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Girke T, Jain PK, Zhu JK (2005) Cloning and characterization of microRNAs from rice. Plant Cell 17:1397–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Thalapati S, Batchu AK, Neelamraju S, Ramanan R (2012) Os11Gsk gene from a wild rice, Oryza rufipogon improves yield in rice. Funct Integr Genomics 12:277–289

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Li DJ, Fu Q, Zhu ZF, Fu YC, Wang XK, Sun CQ (2006) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet 112:570–580

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Long Y, Wang J, Zhang J-w, Wang Y, Li W, Peng Yu, Yuan Q, Pei X (2015) De novo transcriptome assembly of common wild rice (Oryza rufipogon Griff.) and discovery of drought-response genes in root tissue based on transcriptomic data. PLoS One. 10: e0131455. https://doi.org/10.1371/journal.pone.0131455

  • Utami DW, Moeljopawiro S, Aswidinnoor H, Setiawan A, Hanarida I (2008) Blast resistance genes in wild rice Oryza rufipogon and rice cultivar IR64. Indones J Agr 1:71–76

    Google Scholar 

  • Vaughan DA, Lu BR, Tomooka N (2008) The evolving story of rice evolution. Plant Sci 174:394–408

    Article  CAS  Google Scholar 

  • Vitte C, Ishii T, Lamy F, Brar D, Panaud O (2004) Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.). Mol Genet Genomics 272:504–511

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Bai X, Yan C, Gui Y, Wei X, Zhu QH, Guo L, Fan L (2012) Genomic dissection of small RNAs in wild rice (Oryza rufipogon): lessons for rice domestication. New Phytol 196:914–925

    Article  CAS  PubMed  Google Scholar 

  • Waters DL, Nock CJ, Ishikawa R, Rice N, Henry RJ (2012) Chloroplast genome sequence confirms distinctness of Australian and Asian wild rice. Ecology and evolution 2:211–217

    Article  PubMed  PubMed Central  Google Scholar 

  • Wing R, Kim H, Goicoechea J, Yu Y, Kudrna D, Zuccolo A, Ammiraju J, Luo M, Nelson W, Ma J, SanMiguel P (2007) The Oryza map alignment project (OMAP): a new resource for comparative genome studies within Oryza. Rice Funct Genomic 395–409

    Google Scholar 

  • Wu J, Maehara T, Shimokawa T, Yamamoto S, Harada C (2002) A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell. 14:525–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao JH, Li JM, Grandillo S, Ahn SN, Yuan LP, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative. Oryza rufipogon. Genetics 150(2):899–909

    CAS  PubMed  Google Scholar 

  • Xiao N, Sun G, Hong Y, Xia R, Zhang C, Su Y, Chen J (2011) Cloning of genome-specific repetitive DNA sequences in wild rice (O. rufipogon Griff.), and the development of Ty3-gypsy retrotransposon-based SSAP marker for distinguishing rice (O. sativa L.) indica and japonica subspecies. Genet Resour Crop Evol 58:1177–1186

    Article  CAS  Google Scholar 

  • Xie X, Song MH, Jin F, Ahn SN, Suh JP, Hwang HG, McCouch SR (2006a) Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theor Appl Genet 113(5):885–894

    Google Scholar 

  • Xie Z, Wang J, Cao M, Zhao C, Zhao K, Shao J, Lei T, Xu N, Liu S (2006b) Pedigree analysis of an elite rice hybrid using proteomic approach. Proteomics 6:474–486

    Google Scholar 

  • Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN (2008) Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa x O. rufipogon cross. Theor Appl Genet 116(5):613–622

    Article  PubMed  Google Scholar 

  • Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, Li J, He W, Zhang G, Zheng X, Zhang F, Li Y, Yu C, Kristiansen K, Zhang X, Wang J, Wright M, McCouch S, Nielsen R, Wang J, Wang W (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111

    Article  CAS  Google Scholar 

  • Yang H, Hu L, Hurek T, Hurek BR (2010) Global characterization of the root transcriptome of a wild species of rice, Oryza longistaminata, by deep sequencing. BMC Genom 11:705. https://doi.org/10.1186/1471-2164-11-705

    Article  CAS  Google Scholar 

  • Yang CC, Kawahara Y, Mizuno H, Wu J, Matsumoto T, Itoh T (2012) Independent domestication of Asian rice followed by gene flow from japonica to indica. Mol Biol Evol 29:1471–1479

    Article  CAS  PubMed  Google Scholar 

  • Yun YT, Chung CT, Lee YJ, Na HJ, Lee JC, Lee SG, Lee KW, Yoon YH, Kang JW, Lee HS, Lee JY (2016) QTL mapping of grain quality traits using introgression lines carrying Oryza rufipogon chromosome segments in japonica rice. Rice 9:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Lin SC, Zhao BY, Wang CL, Yang WC, Zhou YL, Li DY, Chen CB, Zhu LH (1998) Identification and tagging a new gene for resistance to bacterial blight (Xanthomonas oryzae pv. oryzae) from O. rufipogon. Rice Genet Newsl 15:138–142

    Google Scholar 

  • Zhang J, Feng Q, Jin C, Qiu D, Zhang L (2005) Features of the expressed sequences revealed by a large-scale analysis of ESTs from a normalized cDNA library of the elite indica rice cultivar Minghui 63. Plant J 42:772–780

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhou S, Fu Y, Su Z, Wang X, Sun C (2006) Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (O. rufipogon Griff.). Plant Mol Biol 62:247–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Luo X, Zhou Y, Xie J (2015) Genome-wide identification of conserved microRNA and their response to drought stress in Dongxiang wild rice (Oryza rufipogon Griff.). Biotechnol. https://doi.org/10.1007/s10529-015-2012-0

    Google Scholar 

  • Zhang F, Xu T, Mao L, Yan S, Chen X, Wu Z, Chen R, Luo X, Xie J, Gao S (2016) Genome-wide analysis of Dongxiang wild rice (Oryza rufipogon Griff.) to investigate lost/acquired genes during rice domestication. Plant Biol 16:103

    Google Scholar 

  • Zhang J, Long Y, Xue M, Xiao X, Pei X (2017) Identification of microRNAs in response to drought in common wild rice (Oryza rufipogon Griff.) shoots and roots. PLoS One 12:e0170330. https://doi.org/10.1371/journal.pone.0170330

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Tang J, Walker MG, Zhang X, Wang J (2003) Gene identification and expression analysis of 86,136 Expressed Sequence Tags (EST) from the rice genome. Genomics Proteomics Bioinform 1:26–42

    Article  CAS  Google Scholar 

  • Zhou Y, Yang P, Cui F, Zhang F, Luo X, Xie J (2016) Transcriptome analysis of salt stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.). PLoS One 11(1):0146242. https://doi.org/10.1371/journal.pone.0146242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumari Neelam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neelam, K. et al. (2018). Oryza rufipogon Griff.. In: Mondal, T., Henry, R. (eds) The Wild Oryza Genomes. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-71997-9_25

Download citation

Publish with us

Policies and ethics