US2500206A - Apparatus for plating - Google Patents

Apparatus for plating Download PDF

Info

Publication number
US2500206A
US2500206A US680380A US68038046A US2500206A US 2500206 A US2500206 A US 2500206A US 680380 A US680380 A US 680380A US 68038046 A US68038046 A US 68038046A US 2500206 A US2500206 A US 2500206A
Authority
US
United States
Prior art keywords
slot
box
articles
plating
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US680380A
Inventor
Ralph A Schaefer
James B Mohler
Pochapsky Harry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cleveland Graphite Bronze Co
Original Assignee
Cleveland Graphite Bronze Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cleveland Graphite Bronze Co filed Critical Cleveland Graphite Bronze Co
Priority to US680380A priority Critical patent/US2500206A/en
Priority to GB30268/48D priority patent/GB645183A/en
Priority to FR1010239D priority patent/FR1010239A/en
Application granted granted Critical
Publication of US2500206A publication Critical patent/US2500206A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/10Bearings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S204/00Chemistry: electrical and wave energy
    • Y10S204/07Current distribution within the bath

Definitions

  • the present invention relating, as indicated, to an apparatus for plating, is more particularly directed to the electrodepositing of a layer of metal or metallic alloy onto the concave surfaces of either a plurality of semi-cylindrical articles or to a single semi-cylindrical article of great axial length with relation to the diameter and to maintaining a uniform thickness of deposited metal both circumferentially around the inner surface of the article and axially thereof.
  • Serial No. Serial No.
  • the invention relates to the electrodeposition of a layer of metal onto a plurality of semi-cylindrical metal articles and to the maintenance during the plating operation of a uniform thickness, both axially throughout the column of stacked articles and axially from lateral edge to lateral edge of each cylindrical article.
  • lateral edges employed above, denotes the straight parallel edges of the semi-cylindrical object, the inner or concave surface of which is to be plated.
  • uniform used above and as used'herein, denotes that degree of uniformity in which no portion of the electrode posited layer departs from the average by more than in thickness.
  • the present invention is further concerned with method and apparatus for electrodepositing a uniform layer of metal on a multiplicity of stacked or aligned semi-cylindrical articles or upon a single long tubular article placed in a tank in vertical position.
  • Fig. 1 is a plan view of a semi-cylindrical article which is electroplated on its concave face;
  • Fig. 2 is an elevational View of the article shown in Fig. 1;
  • Fig. 3 is a plan view of a plating rack embodying the features of the invention.
  • Fig. 4 is a sectional view taken along the line 4--"., of Fig. 3;
  • Fig. 5 is a view of a section of the plating rack showing the bottom of the slot
  • Fig. 6 is a sectional view partially diagram-' matic of the slot showing the construction at the top;
  • Fig. 7 is a view partly in perspective and partly in section "of one form of our plating rack or box embodying the present invention.
  • Fig. 8 is a partial view showing the contact plate in the box of Fig. '7.
  • the articles, which it is desired to plate are composed of any suitable base metal. These articles are shaped to finished semi-cylindrical conformity prior to the plating operation. It is desired to hold the tolerance of the finished plated surfaces as close as possible and to obtain the same thickness of plate on each article.
  • the ordinary thickness, which it is desired to plate, is in the neighborhood of .001 inch to .005 inch on concave surface, with or without an electroplated layer on the convex surface.
  • Fig. 1 is shown a semi-cylindrical article with a base metal l and a plated layer of metal 3.
  • FIG. 2 is shown an elevational view of the same article.
  • the rack as illustrated in Fig. 3 produces a plated surface which is uniform on the article both circumferentially and laterally across the faces.
  • the rack l is constructed of an insulating material such as hard rubber or the like and may be completely sealed electrically except for the slot opening 8 in the face 9.
  • the most important I features of this rack dimensionally are the slot opening 8 and the lips 2
  • the dimensions A, B and C are critical and must be held to a certain ratio to the diameter for a uniform deposit circumferentially upon the articles.
  • the cross-section of the vertically constructed slot controls the uniformity of thickness laterally across the face of the article or articles being plated.
  • semi-cylindrical article refers either to a multiplicity of relatively small semi-cylindrical articles having axial lengths ap proximating or less than their diameter, or to a single semi-cylindrical article having an axial length ranging from two to many times its diameter. In operation then such an article is mounted with its concave face adjacent the slot 6. The article is held in position by a suitable clamping device, and electrical contact is made with the article near the top of the rack.
  • a controlled thickness can be plated on the concave surface of the article and also, if desired, on the convex surface thereof. This latter thickness is controlled by the fitting of the panel 8 in the grooves It and I! (Fig. 4). With a loosely fitting panel 8 current follows the electrolyte around the edge of the panel and distributes itself through the solution within the box, plating against and on the back of the semi-cylindrical bearings mounted therein.
  • a slight ledge [8 on the bottom of the slot is shown in Fig. 5 which is a section 5-5 taken in Fig. 3 and shows that the slot must be stopped just short of the end of the bottom shell.
  • This ledge should be from 2 to 8% of the width of the slot A, preventing what is commonly known as end effect in the plating industry.
  • Uniformity on the top shell in the rack is maintained by having the slot at the top of the rack flush with the upper edge of the top shell or by having an insulator plate H! which extends through the slot and in the box as shown in Fig. 6.
  • This plate may be constructed of any insulating material, such as hard rubber, resin, etc.
  • This shadow is inserted in the lower 4% inches of the slot A.
  • This shadow may be in the form of a right triangle on either side of the slot A with the right angle in the lower corner of the ledge l3 and vertical slot 6.
  • the one leg of the right triangle being 4% inches and the other leg of a length sufficient so that the area of each of the two right triangles is 5% of the open slot 6 area.
  • the total restriction of area being 10% of the opening in the lower portion.
  • This is one form of shadow although others may be used.
  • the opening is A inches wide. The right triangles are such that a shadowing effect of 10 per cent will be obtained with the maximum shadowing at the bottom of the slot.
  • FIG. 7 A convenient apparatus for plating multiple semi-cylindrical shells is illustrated in Fig. 7.
  • the apparatus consists of a box 50 of generally rectangular form provided with end and side walls 2! and 22, respectively, and a removable cover 24.
  • the shells are stacked within the box in vertical alignment and with their open faces pressed against the bottom of the box, that is, against the inside of the back of the box proper and with their convex exterior toward the cover of the box and are maintained in that relationship by means of a spring pressed contact 26, (Fig. 8) which is brought into position against an insulated plate 35 mounted on top of the colum of shells to be plated after the latter have been assembled in proper relation in the box.
  • the clamping device consists of the plate 26 which is raised and lowered by means of the supporting stud 5
  • the spring 55 is compressed and the plate 26 is raised.
  • the lever 53 is raised and slipped out of place, thus releasing the spring 55 and allowing the plate 26. to contact the shells l and hold them in Vertical position on the stack I.
  • Current is brought to the contact plate by means of a conductor '21 extending through an opening in the top of the box and connected to a source of current externally.
  • the top of the box is provided with an arm 30 extending upwardly and terminating in a downwardly pointing conical hook 32 adapted to rest in a suitable conveyor arm in a conveyor for operation in a continuous system of tank plating.
  • the cover of the box 24 forms with the box proper a complete enclosure for the row of vertically stacked bearings and the two together serve to substantially electrically insulate the semi-cylindrical article except as current is brought through the conductor already referred to and carried directly to the article.
  • the cover may be held in place by any suitable means, such for example as a ring 29 engaging an extending arm portion at the bottom and releasing cam 3
  • a rack similar to that shown in Fig. 7 was made up of hard rubber molded to shape and having a molded hard rubber cover.
  • the inside length of the rack was approximately 21 inches.
  • the width about 5 inches and the depth about 2 inches.
  • the thickness of the rubber was about inch.
  • a slot and lip were molded in the face of the rack, the dimensions of which were determined from the diameter of shells which it was desired to plate.
  • the slot was constructed with the A dimension .690 inch; B, .090 inch; and C, .220 inch.
  • the slot area is diminished by 10% in the portion already explained.
  • the shells Upon removal from the electrolyte, the shells were carefully measured and were found to have a thickness of .001 inch, the variation in thickness in any direction being no greater than It will be understood, of course, that there may be some electrodeposition on the back or convex surfaces of the bearings, but this, if not desired, can be avoided by any one of several known methods, although in practice a light deposition of the nature of a flash coating is not detrimental since it will serve to prevent rusting of the backs of the bearings during subsequent operations and shipment.
  • a plating device comprising an elongated box of insulating material adapted to receive a series of semi-cylindrical articles to be plated mounted in registering endwise relation and having the inner aligned surfaces thereof facing toward one wall of said box, said box being provided with a longitudinal slot extending for a distance in the wall in which it is formed sub,- stantially equal to the aggregate length of the registering semi-cylindrical articles mountedin said box and such slot being disposed parallel to'the axis of said articles and having a width of substantially 22 to 38% of the diameter of each of said articles, said articles being arranged symmetrically with respect to such slot, and the wall of said box having inwardly projecting lips at each side of such slot with the inward projection of such lips being approximately 3 to 4% of the diameter of said articles and the width of such lips being approximately 6 to 10% of the diameter of said articles, retaining means for maintaining said articles in such position and with their edges against the inner face of said wall of said box having the slot therein and with
  • a plating device comprising an elongated box of insulating material adapted to receive a series of semi-cylindrical articles to be plated mounted in registering endwise relation and having the inner aligned surfaces thereof facing toward one wall of said box, said box being provided with a longitudinal slot extending for a distance in the wall in which it is formed substantially equal to the aggregate length of the registering semi-cylindrical articles mounted in said box and such slot being disposed parallel to the axis of said articles and having a width of substantially 22 to 38% of the diameter of each of said articles, said articles being arranged symmetrically with respect to such slot and such slot being slightly tapered at its vertically lower end for a distance approximating twenty percent of its length, retaining means for maintaining said articles in such position and with their edges against the inner face of said wall of said box having the slot therein and with the articles in close contact edgewise with each other, a removable member constituting the wall of said box opposite to that wall provided with such slot, said removable member when in position being adapted to substantially
  • a plating device comprising an elongated box of insulating material adapted to receive a series of semi-cylindrical articles to be plated mounted in registering endwise relation and having the inner aligned surfaces thereof facing toward one wall of said box, said box being provided with a longitudinal slot extending for a distance in the wall in which it is formed substantially equal to the aggregate length of the registering semi-cylindrical articles mounted in said box and such slot being disposed parallel to the axis of said articles and having a width of substantially 22 to 38% of the diameter of each of said articles, said articles being arranged symmetrically with respect to such slot, and the wall of said box having inwardly projecting lips at each side of such slot with the inward projection of such lips being approximately 3 to 4% of the diameter of said articles and the width of such lips being approximately 6 to 10% of the diameter of said articles, said slot being slightly tapered at its vertically lower end for a distance approximately 20% of its length, retaining means for maintaining said articles in such position with their edges against the inner face of said wall

Description

March 14, 1950 R. AfSCHAEFER ET AL APPARATUS FOR PLATING 2 Sheets-Sheet 1 Filed June 29 1946 VINVENTORSQ EAL/w A. Scmmre Jam; 6. M /L M if mi m x i P i Armelms 0 I R. A. SYCHAEFER ETAL 2,500,206
March 14, 1950 APPARATUS FOR PLATING 2 sheets-sheet? Filed June 29, 1946 Patented Mar. 14, 1950 UNITED STATES PATENT OFFICE.
APPARATUS FOR PLATING Ohio Application June 29, 1946, Serial No. 680,380
3 Claims.
The present invention relating, as indicated, to an apparatus for plating, is more particularly directed to the electrodepositing of a layer of metal or metallic alloy onto the concave surfaces of either a plurality of semi-cylindrical articles or to a single semi-cylindrical article of great axial length with relation to the diameter and to maintaining a uniform thickness of deposited metal both circumferentially around the inner surface of the article and axially thereof. In a ccpending application, Serial No. 587,964, filed April 11, 1945, there is describeda method and apparatus for electrodepositing a uniform layer of metal upon the concave surface of a semi-cylindrical article in which the article has a relatively short axial length and the present application describes a method and apparatus for adopting the method of the above-named application to the roduction of electroplating of either multiple articles of the type shown in the above named application or of a single relatively long article having an axial dimension substantially much greater than its diameter.
Specifically the invention relates to the electrodeposition of a layer of metal onto a plurality of semi-cylindrical metal articles and to the maintenance during the plating operation of a uniform thickness, both axially throughout the column of stacked articles and axially from lateral edge to lateral edge of each cylindrical article. The term lateral edges, employed above, denotes the straight parallel edges of the semi-cylindrical object, the inner or concave surface of which is to be plated. The term uniform, used above and as used'herein, denotes that degree of uniformity in which no portion of the electrode posited layer departs from the average by more than in thickness.
In the plating of any semi-cylindrical article which has a length several times its diameter mounted vertically in a plating bath in the conventional manner, it is a well known fact that more metal will be deposited on the lower portion of the article than on the upper, and also if plating is conducted in the conventional way there will be heavier deposit adjacent to the lateral edges than in the center of the concave portion of the'article. Ordinary plating racks and practices have heretofore made it impossible to plate either a long semicylindrical article or the equivalent thereof, such as a column of stacked semi-cylindrical articles so that a uniform thickness was deposited axially and circumferentially. This in turn has made it impossible to carry out high production plating of semi-cylindrical articles in those instances where it was necessary to have a uniform thickness of deposited metal upon the base metal. By virtue of the present invention, consisting of a simple plating rack or box' it is now possible to greatly reduce or entirely eliminate subsequent machining operations, resulting in a very considerable saving in the cost of applying a uniform layer of electrodeposited metal to a base metal.
The present invention is further concerned with method and apparatus for electrodepositing a uniform layer of metal on a multiplicity of stacked or aligned semi-cylindrical articles or upon a single long tubular article placed in a tank in vertical position.
To the accomplishment of the foregoing and related ends, said invention, then, consists of the means hereinafter fully described and particu larly pointed out in the claims; the annexed drawings and the following description setting forth in detail certain means and one mode of carrying out the invention, such disclosed means and mode illustrating, however, but one of various ways in which the principle of the invention may be used.
In said annexed drawings:
Fig. 1 is a plan view of a semi-cylindrical article which is electroplated on its concave face;
Fig. 2 is an elevational View of the article shown in Fig. 1;
Fig. 3 is a plan view of a plating rack embodying the features of the invention;
Fig. 4 is a sectional view taken along the line 4--"., of Fig. 3;
Fig. 5 is a view of a section of the plating rack showing the bottom of the slot;
Fig. 6 is a sectional view partially diagram-' matic of the slot showing the construction at the top;
Fig. 7 is a view partly in perspective and partly in section "of one form of our plating rack or box embodying the present invention; and
Fig. 8 is a partial view showing the contact plate in the box of Fig. '7.
The articles, which it is desired to plate, are composed of any suitable base metal. These articles are shaped to finished semi-cylindrical conformity prior to the plating operation. It is desired to hold the tolerance of the finished plated surfaces as close as possible and to obtain the same thickness of plate on each article. The ordinary thickness, which it is desired to plate, is in the neighborhood of .001 inch to .005 inch on concave surface, with or without an electroplated layer on the convex surface.
In Fig. 1 is shown a semi-cylindrical article with a base metal l and a plated layer of metal 3. In 2 is shown an elevational view of the same article. The rack as illustrated in Fig. 3 produces a plated surface which is uniform on the article both circumferentially and laterally across the faces. The rack l is constructed of an insulating material such as hard rubber or the like and may be completely sealed electrically except for the slot opening 8 in the face 9. The most important I features of this rack dimensionally are the slot opening 8 and the lips 2|) which are on the inner face of the rack. As will be explained later, the dimensions A, B and C are critical and must be held to a certain ratio to the diameter for a uniform deposit circumferentially upon the articles. Other critical factors are the construction of the slot at either end of the plating column. The cross-section of the vertically constructed slot controls the uniformity of thickness laterally across the face of the article or articles being plated. It will be understood that where the term semi-cylindrical article is used herein it refers either to a multiplicity of relatively small semi-cylindrical articles having axial lengths ap proximating or less than their diameter, or to a single semi-cylindrical article having an axial length ranging from two to many times its diameter. In operation then such an article is mounted with its concave face adjacent the slot 6. The article is held in position by a suitable clamping device, and electrical contact is made with the article near the top of the rack. Access to the interior of the rack is gained by raising the sliding member 8 when loading or unloading the article therefrom and by means of this constrution a controlled thickness can be plated on the concave surface of the article and also, if desired, on the convex surface thereof. This latter thickness is controlled by the fitting of the panel 8 in the grooves It and I! (Fig. 4). With a loosely fitting panel 8 current follows the electrolyte around the edge of the panel and distributes itself through the solution within the box, plating against and on the back of the semi-cylindrical bearings mounted therein. If the fitting of the panel 8 in the grooves is sufficiently tight there will be approximately no plating on the back of the bearing and the condition of the fit therefore controls the quantity of plate deposited on the convex side of the bearings. Another method of either controlling or preventing plate on the convex surface is by inserting an electrical robber element 6! between the cover and the outside of the convex surface as shown in Fig. '7. In mountv ing the article in the rack it is necessary to center it with respect to the slot to obtain proper uniformity of deposit and the edges 1 2 and i3 should be firmly pressed against the inside surface [4 or should be otherwise insulated to avoid plating on these edges and also to prevent current from passing to the back of the article and causing a deposit thereon when not desired.
In order to prevent a heavier deposit on the lower area of the plated article it becomes necessary because of metal ion depletion to increase the resistance in the plating circuit in the lower portion of the rack. The amount of this additional resistance decreases in a regular manner vertically up the rack. After a distance of 4% inches from the bottom has been reached the column will be plated uniformly regardless of its lensth. Ordinary convection currents cause the metal ion de letion factor to approach equilibrium which requires no further correction in the rack for uniform deposits. This change and effect can be accomplished in various ways which will be explained hereinafter.
Another factor which is necessary in order to properly plate the bottom shell in the rack is a slight ledge [8 on the bottom of the slot. This is shown in Fig. 5 which is a section 5-5 taken in Fig. 3 and shows that the slot must be stopped just short of the end of the bottom shell. This ledge should be from 2 to 8% of the width of the slot A, preventing what is commonly known as end effect in the plating industry.
Uniformity on the top shell in the rack is maintained by having the slot at the top of the rack flush with the upper edge of the top shell or by having an insulator plate H! which extends through the slot and in the box as shown in Fig. 6. This plate may be constructed of any insulating material, such as hard rubber, resin, etc.
We have found. that the dimensions of the slot 6 and the lips 2.". are critical in order to obtain a 5% variation in thickness circumferentially around the shell 16 and the following dimensions have been found satisfactory as expressed percentages of shell diameters.
A=22% to 38% B: 3% to 4% C: 6% to 10% The above figures are for conventional plating voltages. Similar accuracy can be obtained by decreasing the above values which increases the total resistance in the plating circuit with a corresponding increase in the plating voltage. Nor- .ial voltages are in the range of 6 to 12.
To prevent a heavier deposit on the lower 4% inches of the plating column a shadow is inserted in the lower 4% inches of the slot A. This shadow may be in the form of a right triangle on either side of the slot A with the right angle in the lower corner of the ledge l3 and vertical slot 6. The one leg of the right triangle being 4% inches and the other leg of a length sufficient so that the area of each of the two right triangles is 5% of the open slot 6 area. The total restriction of area being 10% of the opening in the lower portion. This is one form of shadow although others may be used. At a point 4% inches above the bottom of the rack the opening is A inches wide. The right triangles are such that a shadowing effect of 10 per cent will be obtained with the maximum shadowing at the bottom of the slot.
A convenient apparatus for plating multiple semi-cylindrical shells is illustrated in Fig. 7. The apparatus consists of a box 50 of generally rectangular form provided with end and side walls 2! and 22, respectively, and a removable cover 24. The shells are stacked within the box in vertical alignment and with their open faces pressed against the bottom of the box, that is, against the inside of the back of the box proper and with their convex exterior toward the cover of the box and are maintained in that relationship by means of a spring pressed contact 26, (Fig. 8) which is brought into position against an insulated plate 35 mounted on top of the colum of shells to be plated after the latter have been assembled in proper relation in the box. The clamping device consists of the plate 26 which is raised and lowered by means of the supporting stud 5| which has attached thereto a bracket 52 having extended lugs which contact the lever 53. In the position shown in Fig. 7 the spring 55 is compressed and the plate 26 is raised. After the shells have been assembled in the box the lever 53 is raised and slipped out of place, thus releasing the spring 55 and allowing the plate 26. to contact the shells l and hold them in Vertical position on the stack I. Current is brought to the contact plate by means of a conductor '21 extending through an opening in the top of the box and connected to a source of current externally. The top of the box is provided with an arm 30 extending upwardly and terminating in a downwardly pointing conical hook 32 adapted to rest in a suitable conveyor arm in a conveyor for operation in a continuous system of tank plating.
The cover of the box 24 forms with the box proper a complete enclosure for the row of vertically stacked bearings and the two together serve to substantially electrically insulate the semi-cylindrical article except as current is brought through the conductor already referred to and carried directly to the article. The cover may be held in place by any suitable means, such for example as a ring 29 engaging an extending arm portion at the bottom and releasing cam 3|, as shown at the top.
As an example of the application of the invention, a rack similar to that shown in Fig. 7 was made up of hard rubber molded to shape and having a molded hard rubber cover. The inside length of the rack was approximately 21 inches. the width about 5 inches and the depth about 2 inches. The thickness of the rubber was about inch. A slot and lip were molded in the face of the rack, the dimensions of which were determined from the diameter of shells which it was desired to plate. In order to plate a shell, having a diameter of 2.75 inches, the slot was constructed with the A dimension .690 inch; B, .090 inch; and C, .220 inch. In the bottom of the slot, as already explained, the slot area is diminished by 10% in the portion already explained. There was also a ledge at the bottom of the slot about .024 inch high. Inside the rack and extending through the slot at the top was an insulating member made up of hard rubber. Shells were placed inside the rack with the concave faces adjacent the slot and centered with respect to the slot. They were held in place with a clamping device and a connection was made to the top of the shells for an electrical circuit. The back was placed on the rack and was tightly sealed to keep the convex surfaces from plating. The rack was provided with a hook 3! for suspending in a plating bath and the assembly was processed through the precleaning and etching solutions and Was then suspended vertically in a bath consisting of Grams per liter Lead 100 to 110 Hydrofluoboric acid 40 to 50 Total tin 8 to 12' Resorcinal 1 to 5 Gelatin minimum .1 Copper 1 t 3 The anodes were composed of 10% tin, balance lead and placed around the periphery of the plating tank in a vertical position but in no particular relationship with the rack. The copper is added in the form of soluble salts. The rack remained in the electrolyte for approximately 21 minutes with a current density of 20 am'peres per square foot and between 4 and 6 volts. Upon removal from the electrolyte, the shells were carefully measured and were found to have a thickness of .001 inch, the variation in thickness in any direction being no greater than It will be understood, of course, that there may be some electrodeposition on the back or convex surfaces of the bearings, but this, if not desired, can be avoided by any one of several known methods, although in practice a light deposition of the nature of a flash coating is not detrimental since it will serve to prevent rusting of the backs of the bearings during subsequent operations and shipment.
We claim: 1. A plating device comprising an elongated box of insulating material adapted to receive a series of semi-cylindrical articles to be plated mounted in registering endwise relation and having the inner aligned surfaces thereof facing toward one wall of said box, said box being provided with a longitudinal slot extending for a distance in the wall in which it is formed sub,- stantially equal to the aggregate length of the registering semi-cylindrical articles mountedin said box and such slot being disposed parallel to'the axis of said articles and having a width of substantially 22 to 38% of the diameter of each of said articles, said articles being arranged symmetrically with respect to such slot, and the wall of said box having inwardly projecting lips at each side of such slot with the inward projection of such lips being approximately 3 to 4% of the diameter of said articles and the width of such lips being approximately 6 to 10% of the diameter of said articles, retaining means for maintaining said articles in such position and with their edges against the inner face of said wall of said box having the slot therein and with the articles in close contact edgewise with each other, a removable member constituting the wall of said box opposite to that wall provided with such slot, said removable member when in position being adapted to substantially seal the box electrically except for such slot, and current conducting means passing through said box and engaging with one of said members to be plated.
2. A plating device comprising an elongated box of insulating material adapted to receive a series of semi-cylindrical articles to be plated mounted in registering endwise relation and having the inner aligned surfaces thereof facing toward one wall of said box, said box being provided with a longitudinal slot extending for a distance in the wall in which it is formed substantially equal to the aggregate length of the registering semi-cylindrical articles mounted in said box and such slot being disposed parallel to the axis of said articles and having a width of substantially 22 to 38% of the diameter of each of said articles, said articles being arranged symmetrically with respect to such slot and such slot being slightly tapered at its vertically lower end for a distance approximating twenty percent of its length, retaining means for maintaining said articles in such position and with their edges against the inner face of said wall of said box having the slot therein and with the articles in close contact edgewise with each other, a removable member constituting the wall of said box opposite to that wall provided with such slot, said removable member when in position being adapted to substantially seal the box electrically except for such slot, and current conducting means passing through said box and engaging with one of said members to be plated.
3. A plating device comprising an elongated box of insulating material adapted to receive a series of semi-cylindrical articles to be plated mounted in registering endwise relation and having the inner aligned surfaces thereof facing toward one wall of said box, said box being provided with a longitudinal slot extending for a distance in the wall in which it is formed substantially equal to the aggregate length of the registering semi-cylindrical articles mounted in said box and such slot being disposed parallel to the axis of said articles and having a width of substantially 22 to 38% of the diameter of each of said articles, said articles being arranged symmetrically with respect to such slot, and the wall of said box having inwardly projecting lips at each side of such slot with the inward projection of such lips being approximately 3 to 4% of the diameter of said articles and the width of such lips being approximately 6 to 10% of the diameter of said articles, said slot being slightly tapered at its vertically lower end for a distance approximately 20% of its length, retaining means for maintaining said articles in such position with their edges against the inner face of said wall of said box having the slot therein and with the articles in close contact edgewise with each other, a removable member constituting the wall REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 1,519,572 Wolf Dec. 16, 1924 1,872,221 Bart Aug. 16, 1932 2,073,679 Brown Mar. 16, 1937 2,316,609 Miner Apr. 13, 1943 2,362,228 Wright Nov. 7, 1944 2,434,417 Kugler Jan. 13, 1948

Claims (1)

1. A PLATING DEVICE COMPRISING AN ELONGATED BOX OF INSULATING MATERIAL ADAPTED TO RECEIVE A SERIES OF SEMI-CYLINDRICAL ARTICLES TO BE PLATED MOUNTED IN REGISTERING ENDWISE RELATION AND HAVING THE INNER ALIGNED SURFACES THEREOF FACING TOWARD ONE WALL OF SAID BOX, SAID BOX BEING PROVIDED WITH A LONGITUDINAL SLOT EXTENDING FOR A DISTANCE IN THE WALL IN WHICH IT IS FORMED SUBSTANTIALLY EQUAL TO THE AGGREGATE LENGTH OF THE REGISTERING SEMI-CYLINDRICAL ARTICLES MOUNTED IN SAID BOX AND SUCH SLOT BEING DISPOSED PARALLEL TO THE AXIS OF SAID ARTICLES AND HAVING A WIDTH OF SUBSTANTIALLY 22 TO 38% OF THE DIAMETER OF EACH OF SAID ARTICLES, SAID ARTICLES BEING ARRANGED SYMMETRICALLY WITH RESPECT TO SUCH SLOT, AND THE WALL OF SAID BOX HAVING INWARDLY PROJECTING LIPS AT EACH SIDE OF SUCH SLOT WITH THE INWARD PROJECTION OF SUCH LIP BEING APPROXIMATELY 3 TO 4% OF
US680380A 1946-06-29 1946-06-29 Apparatus for plating Expired - Lifetime US2500206A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US680380A US2500206A (en) 1946-06-29 1946-06-29 Apparatus for plating
GB30268/48D GB645183A (en) 1946-06-29 1946-10-10 Method and apparatus for electro-plating
FR1010239D FR1010239A (en) 1946-06-29 1950-01-31 Electroplating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US680380A US2500206A (en) 1946-06-29 1946-06-29 Apparatus for plating

Publications (1)

Publication Number Publication Date
US2500206A true US2500206A (en) 1950-03-14

Family

ID=24730858

Family Applications (1)

Application Number Title Priority Date Filing Date
US680380A Expired - Lifetime US2500206A (en) 1946-06-29 1946-06-29 Apparatus for plating

Country Status (3)

Country Link
US (1) US2500206A (en)
FR (1) FR1010239A (en)
GB (1) GB645183A (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2675348A (en) * 1950-09-16 1954-04-13 Greenspan Lawrence Apparatus for metal plating
US2697690A (en) * 1948-12-22 1954-12-21 Federal Mogul Corp Electroplating rack
US2727858A (en) * 1952-04-07 1955-12-20 Gen Motors Corp Plating fixture
US2739117A (en) * 1952-06-18 1956-03-20 Gen Motors Corp Electroplating fixture
US2761831A (en) * 1952-05-17 1956-09-04 Gen Motors Corp Electroplating fixture
US2801963A (en) * 1953-12-08 1957-08-06 Ann F Hull Apparatus for the determination of plating characteristics of plating baths
US2859166A (en) * 1955-09-15 1958-11-04 Pennsalt Chemicals Corp Shielding means for effecting uniform plating of lead dioxide in the formation of lead dioxide electrodes
US2913170A (en) * 1954-07-16 1959-11-17 Phillips Petroleum Co Electrolytic analogue for approximately simulating extensions in space to infinity
US2944945A (en) * 1955-07-29 1960-07-12 Gen Motors Corp Electroplating
US3133007A (en) * 1961-06-29 1964-05-12 Federal Mogul Bower Bearings Plating apparatus
US3226308A (en) * 1961-06-15 1965-12-28 Clevite Corp Electrochemical treating method and apparatus
US3282824A (en) * 1962-12-17 1966-11-01 Federal Mogul Bower Bearings Dual sided plating rack
US3290239A (en) * 1963-07-12 1966-12-06 Federal Mogul Corp Box plating rack
US3331764A (en) * 1964-02-24 1967-07-18 Federal Mogul Corp Box-type plating rack
US3929592A (en) * 1974-07-22 1975-12-30 Gen Motors Corp Plating apparatus and method for rotary engine housings
US4950375A (en) * 1989-05-26 1990-08-21 United Technologies Corporation Die for electroforming a part
DE4038108A1 (en) * 1989-11-30 1991-06-06 Daido Metal Co Ltd METHOD AND DEVICE FOR SURFACE TREATMENT OF HALTER BEARINGS
US5200048A (en) * 1989-11-30 1993-04-06 Daido Metal Company Ltd. Electroplating apparatus for plating half bearings
US6321712B1 (en) 2000-04-07 2001-11-27 Dana Corporation Racing engine having trimetal bearings with a thick overlay for high speed and/or high load applications
US20020102853A1 (en) * 2000-12-22 2002-08-01 Applied Materials, Inc. Articles for polishing semiconductor substrates
US20020119286A1 (en) * 2000-02-17 2002-08-29 Liang-Yuh Chen Conductive polishing article for electrochemical mechanical polishing
US20030209448A1 (en) * 2002-05-07 2003-11-13 Yongqi Hu Conductive polishing article for electrochemical mechanical polishing
US20040023610A1 (en) * 2000-02-17 2004-02-05 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US20040023495A1 (en) * 2000-02-17 2004-02-05 Applied Materials, Inc. Contacts for electrochemical processing
US20040020788A1 (en) * 2000-02-17 2004-02-05 Applied Materials, Inc. Contacts for electrochemical processing
US20040082289A1 (en) * 2000-02-17 2004-04-29 Butterfield Paul D. Conductive polishing article for electrochemical mechanical polishing
US20040082288A1 (en) * 1999-05-03 2004-04-29 Applied Materials, Inc. Fixed abrasive articles
US20040121708A1 (en) * 2000-02-17 2004-06-24 Applied Materials, Inc. Pad assembly for electrochemical mechanical processing
US20040134792A1 (en) * 2000-02-17 2004-07-15 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US20040163946A1 (en) * 2000-02-17 2004-08-26 Applied Materials, Inc. Pad assembly for electrochemical mechanical processing
US20050000801A1 (en) * 2000-02-17 2005-01-06 Yan Wang Method and apparatus for electrochemical mechanical processing
US20050092621A1 (en) * 2000-02-17 2005-05-05 Yongqi Hu Composite pad assembly for electrochemical mechanical processing (ECMP)
US20050161341A1 (en) * 2000-02-17 2005-07-28 Applied Materials, Inc. Edge bead removal by an electro polishing process
US20050178666A1 (en) * 2004-01-13 2005-08-18 Applied Materials, Inc. Methods for fabrication of a polishing article
US20050194681A1 (en) * 2002-05-07 2005-09-08 Yongqi Hu Conductive pad with high abrasion
US20060030156A1 (en) * 2004-08-05 2006-02-09 Applied Materials, Inc. Abrasive conductive polishing article for electrochemical mechanical polishing
US20060032749A1 (en) * 2000-02-17 2006-02-16 Liu Feng Q Contact assembly and method for electrochemical mechanical processing
US20060057812A1 (en) * 2004-09-14 2006-03-16 Applied Materials, Inc. Full sequence metal and barrier layer electrochemical mechanical processing
US20060073768A1 (en) * 2004-10-05 2006-04-06 Applied Materials, Inc. Conductive pad design modification for better wafer-pad contact
US20060070872A1 (en) * 2004-10-01 2006-04-06 Applied Materials, Inc. Pad design for electrochemical mechanical polishing
US20060172671A1 (en) * 2001-04-24 2006-08-03 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US20060219663A1 (en) * 2005-03-31 2006-10-05 Applied Materials, Inc. Metal CMP process on one or more polishing stations using slurries with oxidizers
US20060229007A1 (en) * 2005-04-08 2006-10-12 Applied Materials, Inc. Conductive pad
US20070099552A1 (en) * 2001-04-24 2007-05-03 Applied Materials, Inc. Conductive pad with ion exchange membrane for electrochemical mechanical polishing
US20070096315A1 (en) * 2005-11-01 2007-05-03 Applied Materials, Inc. Ball contact cover for copper loss reduction and spike reduction
US20070135024A1 (en) * 2005-12-08 2007-06-14 Itsuki Kobata Polishing pad and polishing apparatus
US20080108288A1 (en) * 2000-02-17 2008-05-08 Yongqi Hu Conductive Polishing Article for Electrochemical Mechanical Polishing
US20080156657A1 (en) * 2000-02-17 2008-07-03 Butterfield Paul D Conductive polishing article for electrochemical mechanical polishing
US20080293343A1 (en) * 2007-05-22 2008-11-27 Yuchun Wang Pad with shallow cells for electrochemical mechanical processing
WO2011086089A1 (en) * 2010-01-13 2011-07-21 Federal-Mogul Wiesbaden Gmbh Tool for galvanically coating sliding bearings
CN105209669A (en) * 2013-04-12 2015-12-30 马勒国际有限公司 Electroplating rack

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB730238A (en) * 1952-10-17 1955-05-18 Clevite Ltd Method of and apparatus for electroplating
US4595480A (en) * 1985-09-26 1986-06-17 National Semiconductor Corporation System for electroplating molded semiconductor devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1519572A (en) * 1923-07-13 1924-12-16 Wmf Wuerttemberg Metallwaren Electroplating
US1872221A (en) * 1926-10-28 1932-08-16 Frink Corp Method and apparatus for forming molds and articles produced thereby
US2073679A (en) * 1935-02-05 1937-03-16 Western Electric Co Electroplating apparatus
US2316609A (en) * 1940-04-09 1943-04-13 Western Electric Co Article supporting rack
US2362228A (en) * 1941-06-12 1944-11-07 Bell Telephone Labor Inc Method of forming contacts on metal oxide-metal rectifiers
US2434417A (en) * 1943-10-25 1948-01-13 Cherry Rivet Company Small parts holder for electrolytic baths

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1519572A (en) * 1923-07-13 1924-12-16 Wmf Wuerttemberg Metallwaren Electroplating
US1872221A (en) * 1926-10-28 1932-08-16 Frink Corp Method and apparatus for forming molds and articles produced thereby
US2073679A (en) * 1935-02-05 1937-03-16 Western Electric Co Electroplating apparatus
US2316609A (en) * 1940-04-09 1943-04-13 Western Electric Co Article supporting rack
US2362228A (en) * 1941-06-12 1944-11-07 Bell Telephone Labor Inc Method of forming contacts on metal oxide-metal rectifiers
US2434417A (en) * 1943-10-25 1948-01-13 Cherry Rivet Company Small parts holder for electrolytic baths

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2697690A (en) * 1948-12-22 1954-12-21 Federal Mogul Corp Electroplating rack
US2675348A (en) * 1950-09-16 1954-04-13 Greenspan Lawrence Apparatus for metal plating
US2727858A (en) * 1952-04-07 1955-12-20 Gen Motors Corp Plating fixture
US2761831A (en) * 1952-05-17 1956-09-04 Gen Motors Corp Electroplating fixture
US2739117A (en) * 1952-06-18 1956-03-20 Gen Motors Corp Electroplating fixture
US2801963A (en) * 1953-12-08 1957-08-06 Ann F Hull Apparatus for the determination of plating characteristics of plating baths
US2913170A (en) * 1954-07-16 1959-11-17 Phillips Petroleum Co Electrolytic analogue for approximately simulating extensions in space to infinity
US2944945A (en) * 1955-07-29 1960-07-12 Gen Motors Corp Electroplating
US2859166A (en) * 1955-09-15 1958-11-04 Pennsalt Chemicals Corp Shielding means for effecting uniform plating of lead dioxide in the formation of lead dioxide electrodes
US3226308A (en) * 1961-06-15 1965-12-28 Clevite Corp Electrochemical treating method and apparatus
US3133007A (en) * 1961-06-29 1964-05-12 Federal Mogul Bower Bearings Plating apparatus
US3282824A (en) * 1962-12-17 1966-11-01 Federal Mogul Bower Bearings Dual sided plating rack
US3290239A (en) * 1963-07-12 1966-12-06 Federal Mogul Corp Box plating rack
US3331764A (en) * 1964-02-24 1967-07-18 Federal Mogul Corp Box-type plating rack
US3929592A (en) * 1974-07-22 1975-12-30 Gen Motors Corp Plating apparatus and method for rotary engine housings
US4950375A (en) * 1989-05-26 1990-08-21 United Technologies Corporation Die for electroforming a part
DE4038108A1 (en) * 1989-11-30 1991-06-06 Daido Metal Co Ltd METHOD AND DEVICE FOR SURFACE TREATMENT OF HALTER BEARINGS
US5141626A (en) * 1989-11-30 1992-08-25 Daido Metal Company Ltd. Method of and apparatus for surface treatment for half bearings
US5200048A (en) * 1989-11-30 1993-04-06 Daido Metal Company Ltd. Electroplating apparatus for plating half bearings
US20040082288A1 (en) * 1999-05-03 2004-04-29 Applied Materials, Inc. Fixed abrasive articles
US7014538B2 (en) 1999-05-03 2006-03-21 Applied Materials, Inc. Article for polishing semiconductor substrates
US20060032749A1 (en) * 2000-02-17 2006-02-16 Liu Feng Q Contact assembly and method for electrochemical mechanical processing
US7125477B2 (en) 2000-02-17 2006-10-24 Applied Materials, Inc. Contacts for electrochemical processing
US20040023610A1 (en) * 2000-02-17 2004-02-05 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US20040023495A1 (en) * 2000-02-17 2004-02-05 Applied Materials, Inc. Contacts for electrochemical processing
US20040020788A1 (en) * 2000-02-17 2004-02-05 Applied Materials, Inc. Contacts for electrochemical processing
US20040082289A1 (en) * 2000-02-17 2004-04-29 Butterfield Paul D. Conductive polishing article for electrochemical mechanical polishing
US20020119286A1 (en) * 2000-02-17 2002-08-29 Liang-Yuh Chen Conductive polishing article for electrochemical mechanical polishing
US20040121708A1 (en) * 2000-02-17 2004-06-24 Applied Materials, Inc. Pad assembly for electrochemical mechanical processing
US20040134792A1 (en) * 2000-02-17 2004-07-15 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US20040163946A1 (en) * 2000-02-17 2004-08-26 Applied Materials, Inc. Pad assembly for electrochemical mechanical processing
US20040266327A1 (en) * 2000-02-17 2004-12-30 Liang-Yuh Chen Conductive polishing article for electrochemical mechanical polishing
US20050000801A1 (en) * 2000-02-17 2005-01-06 Yan Wang Method and apparatus for electrochemical mechanical processing
US20050092621A1 (en) * 2000-02-17 2005-05-05 Yongqi Hu Composite pad assembly for electrochemical mechanical processing (ECMP)
US20050133363A1 (en) * 2000-02-17 2005-06-23 Yongqi Hu Conductive polishing article for electrochemical mechanical polishing
US20050161341A1 (en) * 2000-02-17 2005-07-28 Applied Materials, Inc. Edge bead removal by an electro polishing process
US7678245B2 (en) 2000-02-17 2010-03-16 Applied Materials, Inc. Method and apparatus for electrochemical mechanical processing
US7670468B2 (en) 2000-02-17 2010-03-02 Applied Materials, Inc. Contact assembly and method for electrochemical mechanical processing
US7569134B2 (en) 2000-02-17 2009-08-04 Applied Materials, Inc. Contacts for electrochemical processing
US20050284770A1 (en) * 2000-02-17 2005-12-29 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US6988942B2 (en) 2000-02-17 2006-01-24 Applied Materials Inc. Conductive polishing article for electrochemical mechanical polishing
US6991528B2 (en) 2000-02-17 2006-01-31 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US20080156657A1 (en) * 2000-02-17 2008-07-03 Butterfield Paul D Conductive polishing article for electrochemical mechanical polishing
US7374644B2 (en) 2000-02-17 2008-05-20 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US20080108288A1 (en) * 2000-02-17 2008-05-08 Yongqi Hu Conductive Polishing Article for Electrochemical Mechanical Polishing
US7344431B2 (en) 2000-02-17 2008-03-18 Applied Materials, Inc. Pad assembly for electrochemical mechanical processing
US7303662B2 (en) 2000-02-17 2007-12-04 Applied Materials, Inc. Contacts for electrochemical processing
US7303462B2 (en) 2000-02-17 2007-12-04 Applied Materials, Inc. Edge bead removal by an electro polishing process
US7029365B2 (en) 2000-02-17 2006-04-18 Applied Materials Inc. Pad assembly for electrochemical mechanical processing
US7285036B2 (en) 2000-02-17 2007-10-23 Applied Materials, Inc. Pad assembly for electrochemical mechanical polishing
US7077721B2 (en) 2000-02-17 2006-07-18 Applied Materials, Inc. Pad assembly for electrochemical mechanical processing
US7278911B2 (en) 2000-02-17 2007-10-09 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US20070111638A1 (en) * 2000-02-17 2007-05-17 Applied Materials, Inc. Pad assembly for electrochemical mechanical polishing
US7207878B2 (en) 2000-02-17 2007-04-24 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US7137868B2 (en) 2000-02-17 2006-11-21 Applied Materials, Inc. Pad assembly for electrochemical mechanical processing
US20060231414A1 (en) * 2000-02-17 2006-10-19 Paul Butterfield Contacts for electrochemical processing
US6321712B1 (en) 2000-04-07 2001-11-27 Dana Corporation Racing engine having trimetal bearings with a thick overlay for high speed and/or high load applications
US20070066200A9 (en) * 2000-12-22 2007-03-22 Applied Materials, Inc. Perforation and grooving for polishing articles
US20020102853A1 (en) * 2000-12-22 2002-08-01 Applied Materials, Inc. Articles for polishing semiconductor substrates
US7059948B2 (en) 2000-12-22 2006-06-13 Applied Materials Articles for polishing semiconductor substrates
US20060217049A1 (en) * 2000-12-22 2006-09-28 Applied Materials, Inc. Perforation and grooving for polishing articles
US7311592B2 (en) 2001-04-24 2007-12-25 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US7137879B2 (en) 2001-04-24 2006-11-21 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US20070066201A1 (en) * 2001-04-24 2007-03-22 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US20070099552A1 (en) * 2001-04-24 2007-05-03 Applied Materials, Inc. Conductive pad with ion exchange membrane for electrochemical mechanical polishing
US7344432B2 (en) 2001-04-24 2008-03-18 Applied Materials, Inc. Conductive pad with ion exchange membrane for electrochemical mechanical polishing
US20060172671A1 (en) * 2001-04-24 2006-08-03 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US20050194681A1 (en) * 2002-05-07 2005-09-08 Yongqi Hu Conductive pad with high abrasion
US6979248B2 (en) 2002-05-07 2005-12-27 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US20030209448A1 (en) * 2002-05-07 2003-11-13 Yongqi Hu Conductive polishing article for electrochemical mechanical polishing
US20050178666A1 (en) * 2004-01-13 2005-08-18 Applied Materials, Inc. Methods for fabrication of a polishing article
US20060030156A1 (en) * 2004-08-05 2006-02-09 Applied Materials, Inc. Abrasive conductive polishing article for electrochemical mechanical polishing
US20060260951A1 (en) * 2004-09-14 2006-11-23 Liu Feng Q Full Sequence Metal and Barrier Layer Electrochemical Mechanical Processing
US20060057812A1 (en) * 2004-09-14 2006-03-16 Applied Materials, Inc. Full sequence metal and barrier layer electrochemical mechanical processing
US7084064B2 (en) 2004-09-14 2006-08-01 Applied Materials, Inc. Full sequence metal and barrier layer electrochemical mechanical processing
US7446041B2 (en) 2004-09-14 2008-11-04 Applied Materials, Inc. Full sequence metal and barrier layer electrochemical mechanical processing
US20060070872A1 (en) * 2004-10-01 2006-04-06 Applied Materials, Inc. Pad design for electrochemical mechanical polishing
US7520968B2 (en) 2004-10-05 2009-04-21 Applied Materials, Inc. Conductive pad design modification for better wafer-pad contact
US20060073768A1 (en) * 2004-10-05 2006-04-06 Applied Materials, Inc. Conductive pad design modification for better wafer-pad contact
US20060219663A1 (en) * 2005-03-31 2006-10-05 Applied Materials, Inc. Metal CMP process on one or more polishing stations using slurries with oxidizers
US7427340B2 (en) 2005-04-08 2008-09-23 Applied Materials, Inc. Conductive pad
US20060229007A1 (en) * 2005-04-08 2006-10-12 Applied Materials, Inc. Conductive pad
US20070096315A1 (en) * 2005-11-01 2007-05-03 Applied Materials, Inc. Ball contact cover for copper loss reduction and spike reduction
US20070135024A1 (en) * 2005-12-08 2007-06-14 Itsuki Kobata Polishing pad and polishing apparatus
US20080293343A1 (en) * 2007-05-22 2008-11-27 Yuchun Wang Pad with shallow cells for electrochemical mechanical processing
WO2011086089A1 (en) * 2010-01-13 2011-07-21 Federal-Mogul Wiesbaden Gmbh Tool for galvanically coating sliding bearings
CN102812163A (en) * 2010-01-13 2012-12-05 联邦-莫古尔威斯巴登股份有限公司 Tool for galvanically coating sliding bearings
US9017531B2 (en) 2010-01-13 2015-04-28 Federal-Mogul Wiesbaden Gmbh Tool for galvanically coating sliding bearings
CN105209669A (en) * 2013-04-12 2015-12-30 马勒国际有限公司 Electroplating rack
CN105209669B (en) * 2013-04-12 2018-11-02 马勒国际有限公司 electroplating rack

Also Published As

Publication number Publication date
FR1010239A (en) 1952-06-09
GB645183A (en) 1950-10-25

Similar Documents

Publication Publication Date Title
US2500206A (en) Apparatus for plating
US2500205A (en) Method of plating
US5620581A (en) Apparatus for electroplating metal films including a cathode ring, insulator ring and thief ring
US3065153A (en) Electroplating method and apparatus
CN100378252C (en) Partial plating method and its apparatus
US3437578A (en) Robber control for electroplating
US2751340A (en) Method of plating
US1772074A (en) Method of producing galvanic coatings
TW201348523A (en) Method for Sn-alloy electrolytic plating and sn-alloy electrolytic plating apparatus
US2944945A (en) Electroplating
US2761831A (en) Electroplating fixture
US3634047A (en) Electroplated member and method and apparatus for electroplating
GB1233102A (en)
US3751354A (en) Electroplating cell including magnetic means to couple concave workpieces to a plating rack
US2690424A (en) Apparatus for reduction of heavy edge coating in electroplating
US3117071A (en) Plating rack
US2319624A (en) Current distributing means for electrolytic processes
US2972573A (en) Electrolytic cell
US2737488A (en) Electroplating apparatus
US2766194A (en) Method of plating
US1906378A (en) Anode support
US3888755A (en) Cylinder plating rack
US2758962A (en) Method of electroplating and apparatus therefor
US3779890A (en) Plating boxes for holding a stack of semi-cylindrical bearing liners during plating
US3522165A (en) Apparatus for plating articles